Chem. Ber. 109, 1324-1331 (1976)

Die Kristall- und Molekülstrukturen zweier diastereoisomerer Formen des 9,10,19,20-Tetrahydrotetrabenzo[a,c,g,i]cyclododecens

Ute Voll, Hans Burzlaff* und Hans-Jürgen Bestmann

Institut für Angewandte Physik, Lehrstuhl für Kristallographie der Universität Erlangen-Nürnberg, D-8520 Erlangen, Loewenichstr. 22, und Institut für Organische Chemie der Universität Erlangen-Nürnberg

Eingegangen am 7. August 1975

Die Kristallstrukturen der Mesoform und des Racemats der Titelverbindung (1, 2) wurden mit direkten Methoden gelöst. Die Mesoform kristallisiert in der Raumgruppe PI mit den Gitterkonstanten $a_0 = 10.294$ Å, $b_0 = 10.885$ Å, $c_0 = 9.891$ Å, $\alpha = 100.6^{\circ}$, $\beta = 100.1^{\circ}$, $\gamma = 64.0^{\circ}$. Die Elementarzelle enthält zwei unabhängige Moleküle der Punktsymmetrie I, deren Inversionszentren die speziellen Punktlagen 1b und 1c besetzen. Die Achsen der beiden Biphenyleinheiten liegen etwa parallel, die Interplanarwinkel der Benzolringebenen betragen 84.9°. Die Äthanbrücken besitzen eine gauche-Butan-Anordnung, so daß der Zwölfring eine gestreckte Form erhält. Bei der Verfeinerung wurde ein *R*-Wert von 5.4 erreicht. Das Racemat liegt in der Raumgruppe C 2/c vor mit $a_0 = 16.387$ Å, $b_0 = 16.218$ Å, $c_0 = 15.037$ Å, $\beta = 99.9^{\circ}$. Die asymmetrische Einheit enthält zwei unabhängige Moleküle, deren Schwerpunkte die spezielle Punktlage 4e (Punktsymmetrie 2) besetzen. Die Biphenylachsen sind angenähert senkrecht zueinander angeordnet, der Twistwinkel der Benzolringebenen beträgt 63.4°. Die Äthanbrücken nehmen eine *anti*-Butan-Anordnung ein, so daß der kronenförmige Zwölfring langgestreckt wird. Der abschließende *R*-Wert betrug 7.2.

The Crystal and Molecular Structures of two Diastereoisomeric Forms of 9,10,19,20-Tetrahydrotetrabenzo[a,c,g,i]cyclododecene

The crystal structures of the meso and the racemic form of the title compound (1, 2) have been solved by direct methods. The meso form (m. p. 260-261 °C) crystallizes in the space group P I with the unit cell dimensions $a_0 = 10.294$ Å, $b_0 = 10.885$ Å, $c_0 = 9.891$ Å, $\alpha = 100.6^{\circ}$, $\beta = 100.1^{\circ}$, $\gamma = 64.0^{\circ}$. The unit cell contains two independent molecules with the symmetry I. The centers of symmetry are placed in the special positions 1b and 1c. The axes of both of the biphenyl units are approximately parallel, the dihedral angles between the planes of the benzene rings are 84.9°. The ethane bridges show a *gauche*-butane arrangement, the twelfmembered ring has therefore a stretched shape. The final *R*-value was 5.4. The chiral *trans-trans*-isomer (m. p. 267-268 °C) crystallizes in the space group C 2/c with the unit-cell dimensions $a_0 = 16.387$ Å, $b_0 = 16.218$ Å, $c_0 = 15.037$ Å, $\beta = 99.9^{\circ}$. The racemic form contains two independent molecules. The centers of mass lie on the special position 4e (symmetry 2). The axes of the biphenyl groups are approximately orthogonal, the twist angles of the planes of the benzene rings are 63.4°. The ethane bridges show an *anti*-butane arrangement, for this reason the crown-like twelf-membered ring is stretched. The final *R*-value was 0.072%.

1: Schmp. 260-261°C 2: Schmp. 267-268°C

9,10,19,20-Tetrahydrotetrabenzo[a,c,g,i]cyclododecen (1) wurde von Wittig, König und $Clau\beta^{11}$ vor zwanzig Jahren erstmalig dargestellt. Die Autoren beschreiben zwei Formen vom Schmp. 260 – 261°C und 267 – 268°C, von denen vermutet wurde, daß es sich um rotamere Formen (Rotationspolymorphie) handle. Nachdem die Verbindung 1 durch ein einfaches Syntheseverfahren leicht zugänglich geworden ist², wurden verschiedene Umsetzungen beider Formen studiert, wobei Unterschiede im Reaktionsablauf gefunden wurden ³. Da das Molekül zwei Biphenyleinheiten besitzt, war zu erwarten, daß es sich bei den beiden beschriebenen Rotameren um Diastereoisomere, nämlich eine Mesoform und ein Racemat aus R,R- und S,S-Form, handelt. Aufgrund spektroskopischer Befunde wurde dem tiefer schmelzenden Isomeren die Mesoform zugeordnet ³. Eine Bestätigung dieser Zuordnung durch eine Röntgenstrukturanalyse erschien notwendig, um das verschiedene Reaktionsverhalten beider Formen eindeutig erklären zu können.

Strukturbestimmung und -verfeinerung

Zur Strukturbestimmung der Mesoform (Schmp. 260 - 261 °C) mit direkten Methoden wurde das Programmsystem CRYSTAN⁴⁾ verwendet. Mit Hilfe der Korrelationsmethode nach *de Vries*, für die 10% der stärksten Reflexe herangezogen wurden, ergab sich eine Lösung. Etwa 30% der Gesamtreflexe wurden über die Sayre-Formel mit Vorzeichen versehen und ergaben über eine Fourier-Synthese sofort die Positionen der 28 Kohlenstoffatome als stärkste Maxima. Die Strukturbestimmung des Racemats (Schmp. 267 - 268 °C) erfolgte über die symbolische Additionsmethode. Auch in diesem Fall ergab sich eine eindeutige Lösung. Eine Fourier-Synthese mit wiederum ca. 30% der stärksten Reflexe zeigte die Lage der 28 Kohlenstoffatome.

Mit einem Block-diagonal-least-squares-Verfahren wurde bei beiden Diastereoisomeren das Strukturmodell durch Variation des Skalenfaktors, der Koordinaten und anisotroper Temperatur-faktoren verfeinert. Dabei ergab sich ein R-Wert von 10.6 für die Mesoform und 12.6 für das Racemat. Bei beiden Isomeren zeigte danach eine Differenzen-Fourier-Synthese die Positionen der 24 Wasserstoffatome. In weiteren Iterationen wurde durch Verfeinerung des Skalenfaktors, der Koordinaten, anisotroper Kohlenstoff- und isotroper Wasserstoff-Temperaturfaktoren ein abschließender R-Wert von 5.4 für die Mesoform und 7.2 für das Racemat erreicht. Unbeobachtete Reflexe wurden dabei mit $\frac{1}{2} F_{min}$ eingegeben. Beim Racemat wurden 29 Reflexe der innersten Schale mit $\Theta \leq 4.5^{\circ}$ eliminiert, da sie offenbar mit einem systematischen Fehler behaftet waren. Die Tabellen 1 und 2 enthalten die Koordinaten und thermischen Parameter.

Struktur- und Molekülbeschreibung

Die Elementarzelle der Mesoform enthält zwei unabhängige Moleküle der Symmetrie 1, so daß die Molekülschwerpunkte spezielle Punktlagen (1b und 1c) besetzen müssen (Abb. 1). Da der Winkel γ nur wenig von 60° abweicht, bildet das eine der Moleküle durch

¹⁾ G. Wittig, G. Koenig und K. Clauß, Liebigs Ann. Chem. 593, 127 (1955).

²⁾ H.-J. Bestmann und D. Ruppert, Angew. Chem. 80, 668 (1968); Angew. Chem., Int. Ed. Engl. 7, 637 (1968).

³⁾ D. Ruppert, Dissertation, Univ. Erlangen-Nürnberg 1968.

⁴⁾ Amsterdam Abstracts, Acta Cryst., 23. 1-4, S. 277 (1975).

Translation in der xy-Ebene Netze von leicht verzerrten Hexagonen, die sich bei etwa gleichen Gitterkonstanten a_0 , b_0 , c_0 und α und β nahe bei 90° zum Bauverband "C"zusammenschließen. Das andere Molekül ergibt den gleichen Bauverband um 0 1/2 1/2 verschoben. Die beiden Packungen sind so ineinandergestellt, daß jedes der quasi gleichseitigen Dreiecke durch eine Biphenylgruppe der darüber- bzw. darunterliegenden Schicht zu einer trigonalen Bipyramide abgeschlossen wird.

Die Elementarzelle des Racemats enthält die beiden Enantiomeren als unabhängige Moleküle. Sie gehorchen der Punktsymmetrie 2, weichen jedoch wenig von 222 ab. Jeweils eine zweizählige molekulare Achse fällt mit einer kristallographischen zweizähligen Drehachse zusammen, so daß die Molekülschwerpunkte die spezielle Punktlage 4e (0, y, 1/4; 0 \bar{y} 3/4) in C 2/c besetzen (Abb. 2). Jeder der optischen Antipoden bildet eine etwas verzerrte kubisch dichteste Kugelpackung "F", wobei jeweils der andere Antipode die Oktaederlücken besetzt, so daß angenähert das Bild einer NaCl-Struktur entsteht.

Tab. 1. Koordinaten und Temperaturfaktoren der meso-Form des 9,10,19,20-Tetrahydrotetrabenzo[a,c,g,i]cyclododecens (1)

Atom	X V Z		в.		Atom	* v z		B: -	
A ₁	0,75687(17) 0,51786(17) 0,07442(15)	0.01063(22)	-0.00563(18) 0.00754(21)	0.00160(15) 0.00040(15) 9.00959(18)	F ₂	0.24698(16) 0.40002(17) 0.15982(15)	0, 00B06(20)	-0.00304(17 0.00741(21	9.00118(14) 0.00013(15) 0.00984(18)
⁸ 1	0.59141(19) 0.50544(20) 0.16040(17)	0.01141(24)	-0.00541(29) 0.00993(25)	0.00188(17) -0.00015(18) 0.01178(20)	G2	0.19649(18) 0.29803(18) 0.09877(16)	0.01161(23)	-0.00417(18 0.00682(22)	0.00129(17) 0.00025(16) 0.01108(19)
¢1	0,70940(20) 0,60979(21) 0,30235(17)	0.01362(26)	-0,00752(22) 0,01231(28)	0.00435(18) -0.00188(19) 0.01142(20)	Ąż	0,89363(17) 0,05757(18) 0,25759(15)	0.01122(22)	-0,00474(18) 0,00737(21)	0.00173(15) -0.00026(15) 0.00930(18)
°1	0.84311(19) 0.52480(20) 0.35981(16)	0.01503(27)	-0.00924(24) 1.01267(28)	0.00230(18) -9.00030(18) 9.90927(18)	Вż	0.79134(19) 0.18059(19) 0.21054(17)	0,01272(26)	-0.00499(21) 0.00879(24)	0.00083(18) 0.00176(18) 0.01312(21)
E1	0,94929(18) 0,43678(18) 0,27565(16)	0.91254(24)	-0.00711(20) 0.00909(23)	0.00087(16) 0.00093(16) 0.00950(18)	c;	0.64891(20) 0.20294(21) 0.15945(19)	0.01268(25)	-0.00391(22) 0.01061(27)	0.00045(19) 0.00278(21) 0.01475(23)
F1	0.92349(17) 0.43193(16) 0.13273(15)	0.01114(22)	-0.00602(18) 0.00642(20)	0.00119(15) 0.00048(15) 0.00924(17)	D'2	0.60558(19) 0.09946(22) 0.17363(19)	0.01105(75)	-0,00566(23) 0,01309(29)	0.00014(19) 0.00150(20) 0.01399(23)
G ₁	0.03765(17) 0.33392(17) 0.03927(15)	0.01175(24)	-0.00542(18) 0.00566(21)	0.00081(14) -0,00011(15) 0.00981(18)	Eż	0.70530(18) 0.97811(20) 0.22063(17)	0.01200(25)	-0,00653(21) 0,01016(25)	0.00124(17) 0.00030(16) 0.01132(19)
^ i	0.04752(17) 0.04017(17) 0.29371(16)	0.01105(22)	-0.00437(18) 0.00579(20)	0.00145(16) 0.00122(15) 0.01083(18)	F'2	0.84856(17) 0.95405(17) 0.26579(15)	0.91121(22)	-0.00502(18) 0.00761(22)	0.00182(15) -0.00091(15) 0.00847(17)
Bi	0,14442(19) 0,97163(19) 0,19525(17)	0.01357(25)	-0.00540(20) 0.00786(23)	0,00294(18) -0.00045(17) 0,01189(20)	6 <u>′</u> 2	0.95105(18) 0.81894(18) 0.31953(16)	0.01711(24)	-0.00493(19) 0.00700(21)	0.00195(17) -0.00075(16) 0.01083(20)
сi	0.28669(19) 0.95792(20) 0.22099(18)	0,01316(26)	0,00499(21) 0,00921(26)	0,00453(19) 0,00046(19) 0,01408(23)					_
Di	0.33162(18) 0.01447(20) 0.34569(18)	0,01084(24)	-0,00550(21) 9,01076(26)	0,00195(18) 0,00261(29) 0,01435(23)	b) Koord Atom	x	raturfaktoren der	Wasserstoffatome]
Ei	0,23563(18) 0,08431(19) 0,44438(17)	0.01188(24)	-0.00626(20) 0.00970(25)	0,00101(17) 0,00163(18) 0,01179(20)	b., c. d.,	0,5904(26) 0,6358(27) 0,8708(25)	0.6612(25) 0.6703(27) 0.5711(25)	0.1177(23) 0.3616(24) 0.4632(23)	2.18(50) 2.62(53) 2.15(49)
Fi	0.09265(17) 0.09719(17) 0.42134(15)	0.01093(22)	-0.00470(17) 0.00597(20)	0.00100(16) 0.00137(15) 0.01043(18)	6', d', b'	0.0196(29) 0.9795(22) 0.3044(26)	0.2537(23) 0.2537(39) 0.6229(21) 0.6574(26)	0.3191(21) 0.0094(27) 0.0483(20) 0.0794(23)	1,33(43) 3,47(60) 0,75(39) 2,38(51)
e,	0.01256(17) 0.82721(18) 0.47136(16)	0,01082(23)	-0.00423(18) 0.00693(22)	0.00170(17) 0.00050(16) 0.01155(20)	dz e	0.3790(30) 0.3748(25) 0.2953(26) 0.2562(25)	0.5735(31) 0.5166(24) 0.3463(26) 0.2306(25)	0.3250(28) 0.4659(22) 0.3600(24) 0.0185(23)	3.91(63) 1.93(48) 2.42(51) 2.10(49)
A2	0,25263(16) 0,49066(18) 0,07883(15)	0,00533(29)	-0.00374(17) 0.00754(21)	0,00111(14) 0,00002(15) 0,00977(17)	9,4 6: 6:	0,2183(24) 0,1067(24) 0,3535(27) 0,4343(25)	0.2281(24) 0.9382(24) 0.9144(27) 0.0033(26)	0.1778(22) 0.1033(22) 0.1488(25) 0.3690(23)	1.85(47) 1.68(46) 2.78(54) 2.19(49)
^B 2	0,30222(18) 0,59003(19) 0,14244(17)	0,01122(24)	-0.00634(21) 0.01022(26)	0.00092(17) 0.00022(18) 0.01211(20)	€1 9,7 9,2 b;	0,7256(25) 0,0873(25) 0,0762(24) 0,8290(30)	0.8810(25) 0.8627(25) 0.7302(24) 0.2508(30)	0.4607(22) 0.4805(23) 0.4989(22) 0.1974(28)	1.87(47) 2.14(49) 1.80(47) 3.89(63)
°2	0.34403(19) 0.60261(21) 0.28236(18)	0,01197(25)	-0.00786(22) 0.01320(29)	0.00052(18) -0.00125(1°) 0.01241(21)	dy er 92	0.5740(28) 0.5021(28) 0.6714(29) 0.0369(23)	0.2912(28) 0.1153(28) 0.9089(29) 0.7738(23)	0.1293(26) 0.1389(26) 0.2326(27) 0.2638(21)	3.18(57) 3.21(58) 3.49(60) 1.41(44)
0 ₂	0.34105(18) 0.51217(21) 0.36223(16)	0.010R8(24)	-0.00637(22) 0.01436(29)	-0.00008(17) -0.00072(19) 0.00987(20)	9z <i>"</i>	U, N 901 (28)	9.7600(28)	0,3055(26) [<u>C365</u>]	3.13(57) (75.Tab.1)
E.,	0.29304(18) 0.41271(20) 0.29974(16)	0.01003(22)	-0.00459(20) 9.01147(26)	0.09971(16) 9.00139(17) 0.01030(19)					

a) Koordinaten und Temperaturfaktoren der Kohlenstoffatome

Atom	x y z		P _{ik}		Atom	× y z		Pik	
A 1	0,46259(10) 0,40804(10) 0,21339(11)	0.00331(7)	0.00012(6) 0.00324(7)	0.00116(6) -0.00039(7) 0.00439(10)	°i	0.01896(10) 0.19680(10) 0.14509(11)	0,00339(8)	7.00017(6) 0.00335(7)	0.00075(7) 0.00039(7) 0.00428(9)
⁸ 1	0,40835(11) 0,34140(11) 0,21125(13)	0.00385(8)	0.00353(8) 0.00353(8)	0.00132(8) 0.00007(8) 0.00558(11)	°i	0,03977(10) 0,12445(10) 0,36089(12)	0.00356(A)	0.00027(8) 0.00367(8)	0,00067(7) -0,00019(7) 0,00454(10)
c ¹	0.33979(11) 0.33385(12) 0.14455(13)	0.00371(8)	-0,00084(7) 0,00423(8)	0.00112(8) -0.00055(8) 0.00541(12)	Aż	0.33401(10) 0.11367(10) 0.28888(11)	0.00339(7)	0.0003(6) 0.00314(7)	0,00127(6) 0,00023(7) 0,00417(9)
°,	0.32432(11) 0.39319(12) 0.07840(13)	0.00387(8)	-0.00058(8) 0.00491(9)	0.00036(8) -0.00063(9) 0.00538(11)	Bź	0.26815(11) 0.16776(11) 0.29246(12)	0.00390(B)	0.00032(7) 0.00371(8)	0.00137(7) 0.00017(8) 0.00521(10)
E I	0,37740(11) 0,45903(11) 0,07913(12)	0.00391(8)	-0.00030(7) 0.00406(8)	0.00064(7) -0.00029(7) 0.00427(10)	¢ź	0,27086(11) 0,22443(11) 0,36140(13	0,00441(9)	0,00078(R) 0,00403(R)	0.00201(8) -0.00017(8) 0.00637(12)
r ₁	0.44707(10) 0.46816(10) 0.14564(11)	0.00329(8)	-0.00015(6) 0.00347(7)	0.001/6(7) -0.00054(7) 0.00410(7)	٩ź	0,33973(12) 0,22780(11) 0,42922(13)	0,00537(10)	0.00035(8) 0.00407(9)	0.00206(9) -0.00098(8) 0.00555(11)
e ¹	-0.00423(11) 0.04030(10) 0.35971(12)	0.00348(7)	0.00034(7) 0.00376(8)	0.00102(7) 0.00014(7) 0.00422(9)	Eż	0,40487(11) 0,17433(11) 0,42600(12)	0.00440(9)	-0.00010(7) 0.00431(8)	0.00123(7) -0.00066(8) 0.00433(10)
A 2	0.32144(10) 0.05181(10) 0.21378(11)	0.00318(7)	0.00015(6) 0.00323(7)	0.00057(6) 0.00027(7) 0.00392(9)	۴ż	0.40393(10) 0.11708(10) 0.35710(11)	0,00358(8)	0.00005(6) 0.00333(7)	0,00125(6) 0,00013(7) 0,00388(9)
Bz	0.24595(11) 0.49922(11) 0.28953(12)	0,00362(8)	0.00004(7) 0.00390(8)	0,00097(7) -0,00009(8) 0,00542(10)	۶°	0,52335(10) 0,05936(10) 0,14016(11)	0.00163(9)	-0.00027(7) 0.00369(8)	0.00094(7) -0.00023(7) 0.00397(9)
¢2	0,26580(11) 0,44170(11) 0,35799(13)	0,00347(8)	0.00053(7) 0.00402(8)	0,00065(8) 0,00061(9) 0,00668(12)	b) Koordinaten und Temperaturfaktoren der Wasserstoffatome				
٥z	0.21925(11) 0.43777(12) 0.42555(13)	0.00407(9)	0.00008(8) 0.00467(9)	0,00030(8) 0,00133(9) 0,00589(12)	Atom b,	0,4195(10)	y 0.2967(9)	2	81 2.01(36)
E.2	0.15284(11) 0.49044(12) 0.42351(12)	0_00394(8)	-0.00004(8) 0.00503(9)	0.00073(7) 9.00060(8) 0.00436(10)	د, ط, و,	0,3032(11) 0,2762(10) 0,3672(9) 0,0277(9)		0.1450(12) 0.0078(110) 0.0078(110) 0.0078(110) 0.0078(110) 0.1593(11) 0.0378(3.45(43) 2.91(44) 2.11(37) 1.78(35) 2.66(39) 2.46(38) 3.30(43) 2.44(38) 3.30(43) 2.07(36) 1.82(35) 1.82(35) 2.47(38)
r,	0.36910(10) 0.04795(10) 0.14532(11)	0.00322(7)	0.00009(6) 0.00348(7)	0,00043(6) 0,00017(7) 0,00396(9)	6, 6, 6,	0.0542(10) 0.202(10) 0.2149(10) 0.227(10) 0.3149(10) 0.429(10) 0.4465(9) 0.4465(9) 0.634(10) 0.5622(10) 0.0523(10) 0.0514(10) 0.0514(10) 0.0523(10) 0.0514(10)			
e ²	0,44105(10) 0,10479(10) 0,14113(11)	0.00371(8)	0.00002(7) 0.00371(R)	0,00094(7) 0,00940(7) 0,00399(9) ~~					
^i	0,02551(10) 0,25622(10) 0,21312(11)	0.00317(7)	0.00008(6) 0.00333(7)	0,00067(6) 0,00023(7) 0,00479(10)	Cr d: e.				3.11(41) 2.19(37) 2.41(39) 2.51(39)
B;	0.07950(11) 0.32285(11) 0.21153(13)	0.00386(8)	-0.00030(7) 0.00375(8)	0.00105(8) -0.00011(8) 0.00583(11)	q.r by d:				2.55(39) 2.59(40) 3.27(43) 3.09(41)
ci	9,12687(11) 0,33071(11) 0,14470(13)	0-00391(8)	-0.00058(7) 0.00426(9)	0.00130(R) 0.00058(9) 0.00652(12)	¢,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,4529(10) 0,4654(9) 0,4826(10)	0.1774(10) 0.0185(9) 0.0241(10)		2.09(37) 1.13(32) 2.16(37)
¤;	0.12110(11) 0.27152(12) 0.07807(13)	0.09411(8)	-0.00006(8) 0.00481(9)	0.00155(8) 0.00090(9) 0.00541(11)				j c 36	or (o, lab. 2)
٤į	0.06758(11) 0.20623(11) 0.07822(12)	0.00410(8)	-0.00026(7) n.00403(8)	0,000A8(7) 9,00031(R) 0,00467(10)					

Tab. 2. Koordinaten und Temperaturfaktoren des Racemats des 9,10,19,20-Tetrahydrotetrabenzo[*a,c,g,i*]cyclododecens (2)

Den bestimmenden Faktor für die Molekülgcometrie beider Diastereoisomerer stellt offensichtlich die räumliche Anordnung der Äthanbrücken dar. Sie erzwingen eine Staffelung ihrer Wasserstoffatome. Dadurch wird bei beiden Molekülen der Zwölfring eng zusammengepreßt, so daß sich die Methylenwasserstoffatome, die in den Ring hineinragen, auf maximal 2.2 Å nähern. Beim Racemat mit seiner *anti*-Butan-Anordnung der Äthanbrücke sind dies vier H-Atome, die jeweils mit ihrem benachbarten Phenylring in einer Ebene liegen. Bei der Mesoform mit ihrer *gauche*-Butan-Stellung der Äthanbrücke sind die H-Atome der Methylengruppen unterschiedlich angeordnet. Bei einer der CH₂-Gruppen liegt ein H-Atom in der Ebene durch den benachbarten Phenylring, während die H-Atome der anderen CH₂-Gruppe symmetrisch auf beiden Seiten der Ebene durch den benachbarten Phenylring.

Die Bindungen zwischen den Phenylringen liegen bei der Mesoform etwa parallel (Abb. 3). Der Interplanarwinkel der Benzolringebenen beträgt 84.9°. Beim Racemat sind die Bindungen zwischen den Phenylringen etwa senkrecht zueinander angeordnet (Abb. 4),

a) Koordinaten und Temperaturfaktoren der Kohlenstoffatome

Abb. 1. Packungsdiagramm der Mesoform 1

Abb. 2. Packungsdiagramm des Racemats 2

wobei die Ringe der Biphenyleinheiten um 63.4° gegeneinander verdreht sind. Entsprechende Bindungsabstände und -winkel beider Moleküle weisen keine signifikanten Unterschiede auf. Abb. 3 und 4 zeigen die Schwingungsellipsoide. Die Tabellen 3 und 4 geben die "Besten Ebenen" an.

Abb. 3. Abstände und Winkel der Mesoform 1. Die Größe der Schwingungsellipsoide bestimmt den Raumausschnitt, in dem sich der Kern der Atome mit 50% Wahrscheinlichkeit aufhält

1976

87

Ebene 1 = Phenylring I III Ebene 2 =Ebene 3 =Ebene 4 = Ebene 5 = F(I) G(I) G(III)

Tab. 3. Winkel zwischen "Besten Ebenen" der meso-Form (1)

• •

11

11

Ebene 6 = F(II) G(II) G(III)

II

ш

IV

Ebene	1 E2	E3	E4	E5	E6	
E1	84.9°	84.9°	0.04°	65.2°	80.3°	
E 2		0.02°	84.8°	69.5°	48.4°	
E3			84.8°	69.5°	48.4°	
E4	in Winkelgraden			65.2°	80.4°	
E5					41.4°	

Tab. 4. Winkel zwischen "Besten Ebenen" des Racemats (2). Die Ebenen entsprechen der obigen Aufstellung

Ebene 1	E 2	E 3	E4	E 5	E6
E1	63.4°	67.6°	80.6°	58.6°	60.2°
E2		80.6°	67.6°	60.2°	58.6°
E 3			63.4°	53.9°	52.3°
E4 in	Winkelgrader	1		52.3°	53.9°
E 5	_				2.5°

Herrn Dipl.-Phys. M. Gomm danken wir für die Durchführung der Diffraktometermessungen.

Experimenteller Teil

Von beiden Verbindungen wurden Einkristalle durch Einengen einer benzolischen Lösung als wasserklare Prismen erhalten. Mit einem automatischen Vierkreisdiffraktometer (Hilger & Watts) wurden im 2 Θ , ω -scan mit streng monochromatischer Mo- K_a -Strahlung 11757 Integralintensitäten der Mesoform und 6069 des Racemats gemessen. Davon verblieben 2897 bzw. 2919 unabhängige Reflexe. Die Berechnungen wurden auf der Rechenanlage PDP 11/45 des Lehrstuhls für Kristallographie durchgeführt. Eine Liste der gemessenen und berechneten Strukturfaktoren steht auf Anfrage zur Verfügung.

Mesoform (1): $C_{28}H_{24}$; Mol.-Masse 360.5; Schmp. 260 – 261 °C. $a_0 = 10.294$ Å, $b_0 = 10.885$ Å, $c_0 = 9.891$ Å, $\alpha = 100.6^\circ$, $\beta = 100.1^\circ$, $\gamma = 64.0^\circ$. Auslöschungen: keine. Raumgruppe PI. Das Vorliegen der Zentrosymmetrie wurde durch die E-Statistik und die Lösung der Struktur bestätigt. $\rho_{ber.} = 1.23 \text{ gcm}^{-3}$ für z = 2.

Racemat (2): C₂₈H₂₄; Mol.-Masse 360.5; Schmp. 267-268 °C. a₀ = 16.387 Å, b₀ = 16.218 Å, $c_0 = 15.037$ Å, $\beta = 99.9^{\circ}$. Auslöschungen: *hkl* für h + k ungerade, *h0l* für *l* ungerade. Raumgruppe C 2/c. E-Statistik und Lösung der Struktur erwiesen die Annahme dieser Raumgruppe als richtig. $\rho_{\rm her.} = 1.22 \ {\rm gcm^{-3}} \ {\rm für} \ z = 8.$

[365/75]